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Abstract

The quality of DOSY NMR data can be improved by careful pre-processing techniques. Baseline drift, peak shift, and phase shift

commonly exist in real-world DOSY NMR data. These phenomena seriously hinder the data analysis and should be removed as

much as possible. In this paper, a series of preprocessing operations are proposed so that the subsequent multivariate curve res-

olution can yield optimal results. First, the baseline is corrected according to a method by Golotvin and Williams. Next, frequency

and phase shift are removed by a new combination of reference deconvolution (FIDDLE), and a method presented by Witjes et al.

that can correct several spectra simultaneously. The corrected data are analysed by the combination of multivariate curve resolution

with non-linear least square regression (MCR–NLR). The MCR–NLR method turns out to be more robust and leads to better

resolution of the pure components than classic MCR.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

DOSY NMR data are obtained by a 2-D NMR

experiment with the pulse field gradient (PFG) em-

ployed [1]. The original data consist of a series of NMR

spectra, in which the intensities attenuate with the in-

crease of the gradient strengths. The intensities of a
specific component follow an exponential decay, de-

pending on its diffusion coefficient. The DOSY NMR

experiment results in a 2-D spectrum, displaying

chemical shifts on one axis and the calculated diffusion

coefficients on the other. It can be used as a qualitative

method to identify the molecular components in a

mixture and simultaneously obtain the physical prop-

erties of the system such as size, structure, and so on
[2–5].
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A DOSY NMR data set is a summation of several

diffusion components and forms a bilinear data matrix. It

is the bilinear characteristic that makes it possible to

identify the pure components in a DOSY NMR data set

by multivariate curve resolution (MCR) [6]. Previous re-

search has discussed the difficulty in analysing DOSY

data by regular single channel methods and it has been
revealed thatMCR can be a relatively general way to deal

with DOSY NMR data [7]. To obtain reasonably good

results from MCR, the baseline, frequencies, and phases

of each spectrum need to be more or less consistent.

However, this is often not the case. In a series of NMR

spectra, the baseline offset, the position (frequency) and

the phase of the corresponding resonance peaks are al-

most never identical due to experimental variations. This
can significantly affect the performance of MCR to find

the pure components. Consequently, DOSY NMR data

need to be corrected to minimise the baseline drift, fre-

quency shift, and phase shift in order to gain the best re-

sults fromMCR. This paper proposes a strategy to do so.
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The baseline offset is usually recognised by polyno-
mial regression of a line through the baseline regions,

which are free of resonance peaks. The baseline is then

corrected by subtracting the constructed polynomial

regression line from a NMR spectrum. This is a routine

method for baseline correction. However, polynomial

regression is not able to deal with the large baseline

distortion in different regions of the spectrum. Golotvin

and Williams [8] proposed a novel method to deal with
this problem. The first step is to recognise whether the

points in a spectrum are in the baseline and the second

step is to model a baseline by using the smoothed

spectrum. This technique is simple, and it can remove

even severe baseline distortions effectively. Therefore, it

is used as a baseline correction routine to remove the

baseline offset of the NMR spectra in a DOSY data set

in this paper.
Besides the baseline shift, frequency shift and phase

shift also exist in the spectra of a DOSY NMR data

set. The well-known method, named FIDDLE (free

induction decay deconvolution for lineshape enhance-

ment), also called reference deconvolution, is usually

used to enhance NMR signals [9,10]. The principle

behind it is to select a single peak as reference and

define the desired lineshape of that peak. The differ-
ence between the original peak and the desired peak

transfers the whole spectrum to an improved form.

However, FIDDLE is designed to improve a 1-D

NMR spectrum. In a DOSY NMR data set, there are

at least 16 spectra (usually 32, and sometimes 64

spectra). It is very cumbersome to define the optimal

lineshape and position for the reference peak in each

spectrum. Witjes et al. [11,12] propose an automatic
method to align all the peaks to the same position and

with the same line shape of different spectra, which is

an improved version of the Brown and Stoyanova

method [13]. The procedure is automatic and quick

since the user does not have to estimate the ideal

lineshape one by one for each spectrum. The draw-

back of this method is that it can only perform the

peak alignment for a single peak each time and cause
peak distortion of overlapping peaks. Moreover, the

peak-by-peak correction can give rise to discontinu-

ities in the baseline. In this paper, a new combination

of the two methods described above is proposed to

minimise the peak shape and position problems, while

no additional artefacts are introduced. The correction

procedure mainly follows the FIDDLE method

and the desired lineshape is obtained by Witjes
method. It is shown that the combination of the two

methods, together with the baseline correction

techniques, improves the quality of a DOSY NMR

data significantly.

Once the quality of DOSY NMR data is improved, it

can be analysed by multivariate methods, like MCR.

Previous research has indicated that MCR with a good
initial estimation decay profile is a general method that
can provide reasonably well-resolved spectra and decay

profiles [7]. In this paper, the initial guess of MCR is

obtained by orthogonal projection algorithm (OPA)

[14–16] because it is more easily interpreted and imple-

mented. However, even for a data set with relatively

good quality, the classic MCR will still have difficulties

in the data separation if there are overlapping regions

and the diffusion coefficients are similar. One solution is
to explicitly force the decay profiles to follow an expo-

nential curve. This is often called hard modelling, since a

parametric model is kept fixed, and only values for the

parameters (in this case diffusion coefficients) are esti-

mated for the data. The combination of hard modelling

steps with soft modelling to improve the performance of

MCR has been reported by many papers. For example,

Bezemer and Rutan [17,18] incorporated MCR (soft
modelling) with non-linear fitting of a kinetic model

(hard modelling) into it. Bijlsma et al. [19] proposed to

combine MCR with Levenberg–Marquardt algorithm

[20] to estimate reaction rate constants from UV–vis

spectroscopic data. The Levenberg–Marquardt algo-

rithm is used in each iteration to update the decay

profiles so as to reduce the ambiguity problem in MCR.

It is shown that the MCR–NLR algorithm with non-
negativity constraints is more robust and flexible than

the classic MCR algorithm to analyse DOSY NMR

data.
2. Theory

2.1. Data preprocessing

The goal of data preprocessing is to remove effects

that will deteriorate the subsequent multivariate analy-

sis. We propose a two-step strategy: first correct for

baseline drifts and secondly remove frequency and phase

shift.

2.1.1. Baseline correction

The baseline correction method applied here was

proposed by Golotvin and Williams [8] and includes two

steps. The first step is to recognise the baseline. This is

done by placing the ith point in the centre of a rectangle

window with a width of N spectral points. For each

window the standard deviation is calculated and the

smallest value is taken as the noise standard deviation

(rnoise). If the difference of the minimal and maximal
values in the ith window is less than the noise standard

deviation multiplied a predefined value n, then the ith

point is considered to be in the baseline as described in

the following equation:

ðymax
i � ymin

i Þ < nrnoise: ð1Þ
The parameters, the window width N and the noise

multiplier n, can be chosen to adapt to different data
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sets. The second step is to calculate the smoothed
spectrum by a moving average method. The baseline is

defined by replacing the points in the spectrum found in

Eq. (1) by the value of the smoothed spectrum and

connecting the baseline fragments by straight lines. Fi-

nally, the calculated baseline is subtracted from the

original spectrum. This baseline correction method is

automatic and successfully removes most baseline dis-

tortion in DOSY data.

2.1.2. Phase and frequency shifts correction

As already mentioned, this paper proposes a combi-

nation of FIDDLE (also called reference deconvolution)

[9,10] and a method presented by Witjes et al. [11,12].

The procedures of FIDDLE are performed in the

time domain. The experimental time domain is trans-

ferred to frequency domain by the Fourier transform.
The reference peak is extracted by replacing other peaks

in the spectrum with noise and transformed back to the

time domain by the inverse Fourier transform. An ideal

Lorentzian peak shape of the reference peak is defined

and also transformed to time domain. The corrected

signal is obtained by dividing the original signal in time

domain by the reference time domain signal and then

multiplying the desired estimation of the reference peak.
Finally the corrected NMR spectrum is obtained by a

Fourier transformation of the resulted time domain

signals. This is a classic method for lineshape enhance-

ment of a 1-D NMR spectrum. The drawback of FID-

DLE, especially for the application of the DOSY NMR

data, is that the ideal lineshape of the reference peak

needs to be estimated for every spectrum. It is not

possible to have the same estimate of the reference
peak in every spectrum because the intensities in

different spectra are not the same, i.e., they attenuate

exponentially.

The phase and frequency correction method pro-

posed by Witjes et al. is designed to deal with the

phase and frequency shift problems for a series of

spectra. It is a method based on principal component

analysis (PCA). All instances of a particular peak in
the series of spectra are analysed by PCA to obtain a

PC1 spectrum which can be regarded as the average

spectrum. Each spectrum can be approximately repre-

sented by a linear combination of the real and imagi-

nary values of PC1 and one or more of their

derivatives. The information of phase and frequency

shifts is contained in the regression coefficients, which

can be obtained by using classic least squares. Finally
the phase correction is done in the frequency domain

while the frequency shift is corrected in the time do-

main. The whole procedure is repeated until the shifts

reach insignificantly small values. As a result, every

peak is aligned in the same frequency position and

phase value as the PC1 spectrum. This method is

simple and automatic. It does not need the estimation
of lineshape function one by one spectra. The short-
coming is that it can only perform the alignment to a

single peak, one by one. This can give rise to discon-

tinuities on the baseline. Moreover, if it is applied to

multi-peak correction, peak distortion can be caused

(see below).

Considering the Witjes method is able to correct the

peak shifts and phase shifts of single peaks in a series of

spectra, while FIDDLE can correct the peaks of a
spectrum simultaneously, we propose to combine those

two methods to preprocess the original data set. The

basic procedures are based on FIDDLE. The main dif-

ference lies in the step to obtain the desired lineshape.

Instead of estimating it spectrum by spectrum, the de-

sired lineshape of the reference peaks in the spectra can

be obtained by the Witjes method at once. The reference

peaks should have the same peak shape and the same
frequency. The procedures of the combination method

are summarised in Fig. 1.

When this method is used, it is assumed that the peaks

in the same spectrum have almost the same global phase

and frequency shift. This is usually the case in the DOSY

NMR data. The reference peak should be a single peak

and contain signals from the first spectrum to the last

one. The combined method then can correct the global
shifts for the whole data set and therefore decrease the

experimental artefacts significantly without introducing

new artefacts such as discontinuities and new distortion.

2.2. Data analysis by MCR–NLR

2.2.1. Finding the initial guess

Several methods have been proposed to find good
initial guesses for MCR. In [7] IPCA is applied for this

purpose. In this paper, the orthogonal projection ap-

proach (OPA), adapted to the application of DOSY

NMR data, is employed instead because OPA is more

easily implemented and interpreted than IPCA while the

resulted pure variables are nearly the same or even better.

Orthogonal projection approach (OPA) is a stepwise

procedure based on orthogonalisation method [14,15]. It
was initially used to check peak purity in a chromato-

gram. Later OPA was employed to find purest spectra in

HPLC-DAD data and then trigger MCR-ALS to ex-

plore pure components in a mixture [16]. In each step of

OPA, dissimilarities between all spectra and reference

spectrum are calculated and the spectrum that has the

highest dissimilarity is selected as the pure spectrum. The

stepwise procedures continue until the dissimilarity
spectra show random structure. In the case of the DOSY

NMR data, a pure spectrum is only possibly present in

the last few spectra because the intensities of some

components vanish with the increase of the applied

gradient. Therefore, it is logical to search pure variables

on the frequency (chemical shift) dimension, i.e., search

purest decay profiles. Before actually running OPA, the



Fig. 1. The combination of data enhancement procedures. (a) Baseline correction of the original data set; (b) extract the reference peak by

substituting other peaks with backgrounds noises; (c) using Witjes method to align the reference peaks; (d) inverse Fourier transform (IFT) of the

corresponding spectra into time domain; (e) calculation in time domain to obtain the corrected signal; (f) Fourier transform (FT) into the corrected

spectra (dashed line in zoomed-in image is the original spectrum).
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data set needs to be pre-treated by selective normalisa-

tion [14], i.e., variables with mean values greater than a

predefined threshold are normalised to unit length while

other variables remain unchanged. Selectively normal-

ising variables can eliminate the effects of the intensities.

As a result, the amount of dissimilarity only depends on

the angle between an individual vector and reference

vectors. In the experimental data, it is difficult to obtain
random dissimilarity spectrum even with a high number

of pure variables. Hence, it is recommended to search

more pure variables than the real number of components

in a mixture and then plot the pure variables with the

unit length to 1, i.e., normalised pure variables. If some

pure variables show the same decay curves, then it can be

considered that they account for the same component

and hence only one of those pure variables is used to
represent this component in the initial guess matrix.

In some cases there is no pure variable available for

some of or all of the components in the original data set.

Consequently, only using OPA is not able to find all the

pure variables. Windig et al. [21–23] developed a method

combining original with second-derivative data to solve

this problem. Second-derivative data are obtained by

Savitzky–Golay method. The pure variables are then
searched in the conventional data and second-derivative

data sequentially by OPA. The resulted pure variables

are normalised to unit length of 1 and plotted in the same

figure. The number of pure components is determined

visually by the number of the different decay profiles in

this plot.
2.2.2. MCR-ALS combined with non-linear least square

regression

Generally, MCR-ALS with non-negativity constraints

is capable of resolving pure spectra and decay profiles,

provided a good initial guess is present. However, for a

mixture that contains many components and hence may

have many overlapping peaks, there is more ambiguity.

What is more, even small experimental artefacts can also
affect the performance ofMCR to such an extent that it is

difficult to obtain unique solutions to the separation of

pure components. Fortunately, MCR is very flexible so

that extra constraints can be applied. Because the signals

of DOSY NMR spectra attenuate exponentially with the

increase of gradient levels, non-linear least square re-

gression on decay profiles for each iteration of ALS can

be used to reduce the rotation ambiguity of MCR. This
can be done by the Levenberg–Marquardt algorithm

with a pre-defined exponential function [19,20].

The attenuation of signal of each component in

DOSY NMR measurement is described by Eq. (2) [24].

In the exponential part of Eq. (2), DðnÞ is diffusion co-

efficient of the nth component (m2/s). d is the duration of

gradient pulses (s) and D is the diffusion time (s), both of

which are experiment constants set by the user. K is
multiplication of c, the gyromagnetic ratio of the 1H

nucleus (rad s�1 T�1), g, the gradient strength (T), and d.
I0ðnÞ is the intensity before gradient strength g is em-

ployed. For a system with N components, the measured

spectra are the sum of the intensities of the components

and it can be expressed by the following equation:
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Iðn; g2Þ ¼ I0ðnÞ exp½�DðnÞðD� d=3ÞK2�; ð2Þ

K ¼ cgd;

Iðg2Þ ¼
XN
n¼1

Iðn; g2Þ: ð3Þ

According to Eqs. (2) and (3), a DOSY NMR data set of

mixture is actually a bilinear data matrix as described in

Eq. (4):

I ¼ C � ST; ð4Þ

where C contains N column vectors, every of which

accounts for a pure decay profile of a component, and S

matrix contains the pure spectra, i.e.,

for nth column in C;

CðnÞ ¼ exp½�DðnÞðD� d=3ÞK2� ð5Þ

and the nth row in S; SðnÞ ¼ I0ðnÞ: ð6Þ

Therefore, MCR-ALS can be applied to resolved DOSY

NMR data. Firstly, pure variables are selected by OPA
and placed in matrix C. Then the corresponding spectra

are calculated by least square regression as Eq. (7). A

new set of decay profiles is obtained from the calculated

spectra according to Eq. (8). The non-negativity con-

straints are applied to Eqs. (7) and (8). This alternating

procedure proceeds until the residuals reach to a pre-

defined convergence criterion:

S ¼ IT � C � ðCT � CÞ�1
; ð7Þ

C ¼ I � S � ðST � SÞ�1
: ð8Þ

Before starting a new iteration, Leverberg–Marquardt

algorithm is applied to update the decay profiles C

with an exponential function based on Eq. (5). By a

transformation of natural logarithm, Eq. (5) is actu-

ally a linear regression problem with the increase K2

or g2. Polynomial fitting of the transformed equation

can be used to obtain the initial estimation of pa-

rameters of Leverberg–Marquardt algorithm. The ad-

vantage of combining hard and soft modelling is that

it can reduce the ambiguities of MCR and hence
make the model more robust. In addition, the non-

negativity constraints are also employed to obtain

chemically and physically meaningful pure spectra and

decay profiles. Finally, the relative root of sum of

squared differences (RRSSQ) is used to assess the

similarity between the reconstructed data and the

original data:

%RRSSQ ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðIreconstructed � IoriginalÞ2P 2

s
: ð9Þ
ðIoriginalÞ
3. Experimental

3.1. Simulated data

One simulated data are constructed to examine the

combination of FIDDLE and the Witjes method. This

data set has been used in [7]. It contains three

components with the diffusion coefficients of 5.0� 10�7,

1.0� 10�6, and 1.0� 10�7 cm2/s. Thirty-two gradient
levels from 64� 104–1.9321� 108 are employed. The

two experimental constants D and d are 100 and 5ms,

respectively. Additionally, in each spectrum of the data

set, the peaks contain a frequency shift of )0.1 to 0.1

data point and a phase shift of )0.5 to 0.5�. This is a

global shift for each spectrum, which means the peaks in

the same spectrum have the same frequency and phase

shifts within the range. To make the data more realistic,
completely random small shifts (1% of the global shift)

are added to the data as well. In addition, the data also

contain normally distributed noise with a standard de-

viation of 0.035% of the highest peak intensity.

A second simulated data set contains four diffusion

components whose diffusion coefficients are 5.0� 10�7,

1.0� 10�7, 2.0� 10�7, and 0.8� 10�7. It has the same

gradients levels and experimental parameters as the one
described above and also contains noise with a standard

deviation of 0.035% of the highest peak intensity. It is

supposed that this data set has been preprocessed by the

methods mentioned above. Thus, there is only a small

amount of frequency and phase shift, i.e., �0.02 data

point and �0.01�, respectively. This is a more complex

data set in which there are more overlapping peaks and

the diffusion coefficients of the components are closer to
each other. It is used to examine the difference between

the classic MCR and MCR–NLR.

3.2. Experimental data

The mixture is made by Oc�e-Technologies BV, Venlo.
It contains Tinuvin 328 (0.5323 g), MvMv (0.3279 g),

ethylene glycol (0.1356 g), pyrazine (0.1370 g) dissolved
in water, and CDCl3. Two data sets of this mixture are

recorded by Organon and Philips, respectively. The

same sample measured at two different locations with

different conditions leads to slightly different results.

The first data set, named EXP1, measured by N.V.

Organon, Oss, contains small peak and phase shifts,

as well as baseline distortion and baseline drifts.

Therefore, EXP1 can be used to examine the prepro-
cessing method. The data were measured by a Bruker

400Hz NMR spectrometer. A bipolar gradient simu-

lated echo pulse sequence was used. The applied

diffusion time (DÞ is 100ms and the duration of gra-

dient pulses (dÞ is 1.2ms. The maximum gradient is

53.5Gauss/cm and it varies with 32 levels. Therefore,

the data contain 32 spectra and in each spectrum
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there are 8192 points on the chemical shift dimension
(size: 32� 8192).

The second experimental data set (EXP2), measured

by Philips CFT, Eindhoven, almost has no shift problem

but only a small baseline drifts are present. These data

are also recorded by a Bruker 400Hz NMR instrument

with the use of a bipolar gradient simulated echo pulse

sequence. The maximum gradient applied is 54.4Gauss/

cm and there are 32 gradient levels used in the DOSY
experiment. The size of the data EXP2 is also 32� 8192.

The applied diffusion time (DÞ is the same as those of

data EXP1 but the duration of gradient pulses (dÞ is

smaller (0.6ms), so the intensities decay slowly and

hence the regression coefficients of the exponential

curves (relative diffusion coefficients) are closer to each
Fig. 3. (A) The simulated DOSY NMR data and (B) the ref

Fig. 2. Components of the chemical mixture. (A) The DOSY spectrum
other. This may cause difficulties to resolve the data if
only applying classic MCR. Therefore, data EXP2 are

employed to evaluate the performance of classic MCR

and MCR–NLR.

A DOSY spectrum of this mixture, calculated using

the commercial XWINNMR Software (Bruker, Ger-

many) [25], is shown in Fig. 2A, where the components

and their molecular weights are also displayed. This

DOSY spectrum is obtained based on the algorithm of a
single channel method, i.e., mono-exponential fitting. It

reveals the components in the mixture reasonably and

can be used as a reference of the resolved spectra resulted

from the multivariate methods. The single channel

method is able to gain good separation in this case be-

cause there is almost no overlapping peak contained in
erence pure spectra of the corresponding components.

of experimental data and (B) the corresponding pure spectra.
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the mixture spectrum. However, one can see that the
calculated diffusion coefficient of each peak varies in a

considerable range even there is only one component

contributing to one peak. This is also the main disad-

vantage of all the single channel methods [7]. If there are

more overlapping peaks in a sample, it may be difficult to

use the single channel methods and therefore applying

multivariate methods is necessary. This is also the pur-

pose of this paper to explore a more general algorithm
with the multivariate methods. The experimental data

sets used for the evaluation of MCR and MCR–NLR

contain six components. However, there are only four

components that can be resolved because the diffusion

coefficients of ethylene glycol and pyrazine are very close

to each other. Besides, the signal produced by the OH

group of water at 1.8 ppm in chloroform and the OH

group of ethylene glycol at 2.45 ppm are very dependent
on the condition of the total solution. Because of the

exchangeable nature of these protons, the signals can

change in position in time. This can also be another

reason why the two experimental data sets result in dif-

ferent pure spectra for the last two components (see be-

low). The peak near 2.4 ppm is a combination of those

two OH groups. Hence, it appears to interfere on the
Fig. 4. Problem of the PCA-based correction for frequency and phase shift

original data; (B) data correction peak by peak; and (C) data correction wit
diffusion coefficient axis with chloroform in Fig. 2A.
Fig. 2B gives the NMR pure spectra of the chemical

compounds measured in the solvent of chloroform.

3.3. Software

The data analysis is accomplished using MAT-

LAB_6.0 from Math works [26]. The MCR algorithm

used in this paper is modified based on the MCR
function in PLS_Toolbox 2.2. All calculations are done

on a Sun UNIX workstation. The software package

used for the calculation in this paper will soon become

available on our website: http://www.cac.sci.kun.nl/.
4. Results and discussions

4.1. Assessment of preprocessing method

4.1.1. Simulated data1

The first simulated data set and the ‘‘true’’ pure

spectra are plotted in Fig. 3. There are two separated

peaks and three peaks partially overlapping with one

another. The problem of the Witjes method lies in the
s. (A) The zoomed-in image of the partially overlapping region in the

h the three peaks together.

http://www.cac.sci.kun.nl/
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overlapping region. The zoomed-in image of the
overlapping region is given by Fig. 4A. If the fre-

quency and phase correction are done peak-by-peak

separately, then discontinuities will appear on the

baseline, as indicated by arrows in Fig. 4B. If the

three peaks are corrected altogether, the peak shape

can be distorted (see Fig. 4C). On the other hand,

when the data are corrected by the combination of

FIDDLE and Witjes method, the phase and peak
shifts are corrected and no new artefacts are intro-

duced (see Fig. 5). To examine how the combined

preprocessing method improves a DOSY NMR data,

MCR is applied to the simulated data1 before and

after correction. The resolved pure spectra and the

corresponding decay profiles are shown in Fig. 6. In

Fig. 6A, one can see that the pure spectra of the first

and second component are not resolved correctly.
There are some peaks that are contributions from

other components. This is because the position and

the phase of the corresponding peak in different

spectra are not consistent. Also, the corresponding
Fig. 5. Illustration of the data correction by combining FIDDLE and the W

(B) the partially overlapping region after correction; and (C) zoomed-in ima
decay profiles are not smooth. On the other hand, the
pure spectra and the pure decay profiles are better

resolved after data correction, as indicated in Fig. 6B.

4.1.2. EXP1

The data EXP1 are analysed by OPA and classic

MCR. The pure spectra and decay profiles of the data

set before and after correction resolved by MCR are

plotted in Figs. 7 and 8, respectively. In Fig. 7A, one
can see that the peaks around 6 ppm from the second

component are also present in other pure spectra,

whereas these errors are reduced in the corrected

spectra, as can be seen in Fig. 7B. This is also the case

for the peak around 0 ppm and around 1 ppm. More-

over, the last spectrum in Fig. 7B contains lower in-

tensities of the peaks from other components. The

decay profiles from the data with correction are also
smoother (see Fig. 8). By comparing the DOSY spec-

trum in Fig. 2A and the pure spectra in Fig. 2B, the

peak around 3.5 ppm in the last spectrum in Fig. 7B

dose not belong to any of the components in the
itjes method. (A) The partially overlapping region in the original data;

ge after correction.



Fig. 6. The resolved pure spectra and pure decay profiles by MCR for simulated data1. (A) Obtained by the data before correction and (B) obtained

by the data after correction.
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mixture because it has a much slower decay behaviour

(see Fig. 8). This could be caused by the formation of

an unknown impurity, which may lead to the mixed

peak of water and ethylene glycol that is too small to

be separated. Moreover, the intensities of the peak near

7.25 ppm accounting for the chloroform are very low

because of evaporation.

4.2. Comparison of MCR vs MCR–NLR

4.2.1. Simulated data2

The second simulated data set contains more over-

lapping region and four components (see Fig. 9). This

more complex data set is used here to examine the

performance of classic MCR and the combination of

soft and hard modelling method, i.e., MCR–NLR. The
pure variables are found by OPA and second-derivative

method, as described already in Section 2. The resolved

pure spectra obtained from the two methods are given

by Fig. 10. It shows that the combination method

MCR–NLR can gain much better resolution of the

pure spectra than the classic MCR in which only non-

negativity constraint is applied. The calculated diffu-

sion coefficients (D) and the RRSSQ values are shown
by Table 1. The D values acquired by both methods

are very similar, although those values from MCR–

NLR are a little closer to the corresponding reference

values. Also, the RRSSQ is a little bit better with

MCR–NLR. From the results above, it can be seen

that the classic MCR has difficulties in dealing with

data that contain overlapping peaks in the presence of

even a small amount of artefacts. Also, the similarity
of the diffusion coefficients is another reason why the

classic MCR is not able to resolve the pure compo-

nents properly. The disadvantage of most curve reso-

lution method is that the solutions are not unique; i.e.,

there are infinite pure spectra and the decay profiles

that can fulfil Eq. (4) with the same residuals between

the constructed data and the original data [27]. This

disadvantage can be overcome by applying non-nega-
tivity constraints to the solutions, which is described

as the classic MCR in this paper. However, as there are

more overlapping peaks in the data, non-negativity

constraints can only remove part of the non-uniqueness

problem. By applying NLR in each iteration of the

classic MCR, the pure decay profiles are forced to

follow exponential decay more strictly and hence

results in unique solutions.



Fig. 7. Pure spectra of data EXP1: (A) before correction and (B) after correction.
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4.2.2. Exp2

Following the same procedures as described before,
i.e., after the data correction, first using OPA to find the

pure variables, and then running the multivariate

methods, four pure spectra and decay profiles are

found. Since the data Exp2 do not contain distinct peak

and phase shifts, the preprocessing procedure mainly

correct the baseline shift problem and the peak and

phase position remain more or less the same after cor-

rection. The resolved pure spectra are displayed in
Fig. 11. Compared to the DOSY spectrum in Fig. 2A

and the pure spectra in Fig. 2B, one can see that the

pure spectra from MCR–NLR are better resolved than

those obtained from the classic MCR. The classic MCR
can only reasonably resolve the first component, Tinu-

vin 328, but fails to separate the others. Table 2 presents
the relative diffusion coefficients of the components

calculated by the two methods and the RRSSQ values.

Again, one can see that there is only a tiny change in

diffusion coefficients, which indicates that the diffusion

coefficients are relatively more stable than the pure

spectra. An interesting thing is that the RRSSQ value

from MCR–NLR are higher than that from the classic

MCR. This is because the classic MCR minimise the
residuals as much as possible while imposing a kinetic

model on the data is trying to correct an imperfect ex-

ponential decay profile. As a result, more residuals can

be introduced.



Fig. 8. The corresponding decay profiles of data EXP1: (A) before correction and (B) after correction.

Fig. 10. Resolved pure spectra of the simulated data2 by: (A) MCR

and (B) MCR–NLR.

Fig. 9. The more complex simulated data2. (A) The raw data and (B)

the reference pure spectra.
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5. Conclusion

The quality of DOSY NMR data can be improved by

a set of carefully selected preprocessing methods. Base-

line distortion and baseline drift can be eliminated by

the automatic baseline correction method. The fre-

quency and phase shift problem can be reduced by the

combination of FIDDLE and the Witjes method. When
using this combined method, it is assumed that the data

have the same global shift of the peaks in the same
spectrum and the small random variation can be ig-

nored. For the data that have large dynamic shift in the

whole spectrum, the data can be divided with two or



Table 1

Diffusion coefficients (� 10�7) of the simulated data obtained from

MCR and MCR–NLR

Reference value MCR MCR–NLR

Comp.1 5.000 5.040 5.021

Comp.2 1.000 1.006 0.994

Comp.3 2.000 1.984 1.986

Comp.4 0.800 0.769 0.778

RRSSQ 0 1.03% 0.88%

Table 2

Relative diffusion coefficients of the experimental data obtained from

MCR and MCR–NLR

MCR MCR–NLR

Tinuvin 0.0173 0.0174

MvMV 0.0230 0.0228

EG and pyrazine 0.0274 0.0274

Water and CHCl3 0.0454 0.0481

RRSSQ 0.31% 0.94%
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several parts on the chemical shift dimension and the
combined method is applied to part of the data each

time. Preprocessing of the original data can improve the
Fig. 11. Resolved pure spectra of the data EX
data quality and hence help to identify pure components

more easily from MCR. As the data set is getting

complex, i.e., many overlapping peaks, similar diffusion
P2 by: (A) MCR and (B) MCR–NLR.
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coefficients, and so on, the solution of MCR is not
unique any more. In this difficult situation, MCR–NLR,

the combination of soft and hard modelling method, can

be applied to eliminate the ambiguities and result in

more reasonable resolution.
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