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Abstract

The quality of DOSY NMR data can be improved by careful pre-processing techniques. Baseline drift, peak shift, and phase shift
commonly exist in real-world DOSY NMR data. These phenomena seriously hinder the data analysis and should be removed as
much as possible. In this paper, a series of preprocessing operations are proposed so that the subsequent multivariate curve res-
olution can yield optimal results. First, the baseline is corrected according to a method by Golotvin and Williams. Next, frequency
and phase shift are removed by a new combination of reference deconvolution (FIDDLE), and a method presented by Witjes et al.
that can correct several spectra simultaneously. The corrected data are analysed by the combination of multivariate curve resolution
with non-linear least square regression (MCR-NLR). The MCR-NLR method turns out to be more robust and leads to better

resolution of the pure components than classic MCR.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

DOSY NMR data are obtained by a 2-D NMR
experiment with the pulse field gradient (PFG) em-
ployed [1]. The original data consist of a series of NMR
spectra, in which the intensities attenuate with the in-
crease of the gradient strengths. The intensities of a
specific component follow an exponential decay, de-
pending on its diffusion coefficient. The DOSY NMR
experiment results in a 2-D spectrum, displaying
chemical shifts on one axis and the calculated diffusion
coefficients on the other. It can be used as a qualitative
method to identify the molecular components in a
mixture and simultaneously obtain the physical prop-
erties of the system such as size, structure, and so on
[2-5].
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A DOSY NMR data set is a summation of several
diffusion components and forms a bilinear data matrix. It
is the bilinear characteristic that makes it possible to
identify the pure components in a DOSY NMR data set
by multivariate curve resolution (MCR) [6]. Previous re-
search has discussed the difficulty in analysing DOSY
data by regular single channel methods and it has been
revealed that MCR can be a relatively general way to deal
with DOSY NMR data [7]. To obtain reasonably good
results from MCR, the baseline, frequencies, and phases
of each spectrum need to be more or less consistent.
However, this is often not the case. In a series of NMR
spectra, the baseline offset, the position (frequency) and
the phase of the corresponding resonance peaks are al-
most never identical due to experimental variations. This
can significantly affect the performance of MCR to find
the pure components. Consequently, DOSY NMR data
need to be corrected to minimise the baseline drift, fre-
quency shift, and phase shift in order to gain the best re-
sults from MCR. This paper proposes a strategy to do so.
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The baseline offset is usually recognised by polyno-
mial regression of a line through the baseline regions,
which are free of resonance peaks. The baseline is then
corrected by subtracting the constructed polynomial
regression line from a NMR spectrum. This is a routine
method for baseline correction. However, polynomial
regression is not able to deal with the large baseline
distortion in different regions of the spectrum. Golotvin
and Williams [8] proposed a novel method to deal with
this problem. The first step is to recognise whether the
points in a spectrum are in the baseline and the second
step is to model a baseline by using the smoothed
spectrum. This technique is simple, and it can remove
even severe baseline distortions effectively. Therefore, it
is used as a baseline correction routine to remove the
baseline offset of the NMR spectra in a DOSY data set
in this paper.

Besides the baseline shift, frequency shift and phase
shift also exist in the spectra of a DOSY NMR data
set. The well-known method, named FIDDLE (free
induction decay deconvolution for lineshape enhance-
ment), also called reference deconvolution, is usually
used to enhance NMR signals [9,10]. The principle
behind it is to select a single peak as reference and
define the desired lineshape of that peak. The differ-
ence between the original peak and the desired peak
transfers the whole spectrum to an improved form.
However, FIDDLE is designed to improve a 1-D
NMR spectrum. In a DOSY NMR data set, there are
at least 16 spectra (usually 32, and sometimes 64
spectra). It is very cumbersome to define the optimal
lineshape and position for the reference peak in each
spectrum. Witjes et al. [11,12] propose an automatic
method to align all the peaks to the same position and
with the same line shape of different spectra, which is
an improved version of the Brown and Stoyanova
method [13]. The procedure is automatic and quick
since the user does not have to estimate the ideal
lineshape one by one for each spectrum. The draw-
back of this method is that it can only perform the
peak alignment for a single peak each time and cause
peak distortion of overlapping peaks. Moreover, the
peak-by-peak correction can give rise to discontinu-
ities in the baseline. In this paper, a new combination
of the two methods described above is proposed to
minimise the peak shape and position problems, while
no additional artefacts are introduced. The correction
procedure mainly follows the FIDDLE method
and the desired lineshape is obtained by Witjes
method. It is shown that the combination of the two
methods, together with the baseline correction
techniques, improves the quality of a DOSY NMR
data significantly.

Once the quality of DOSY NMR data is improved, it
can be analysed by multivariate methods, like MCR.
Previous research has indicated that MCR with a good

initial estimation decay profile is a general method that
can provide reasonably well-resolved spectra and decay
profiles [7]. In this paper, the initial guess of MCR is
obtained by orthogonal projection algorithm (OPA)
[14-16] because it is more easily interpreted and imple-
mented. However, even for a data set with relatively
good quality, the classic MCR will still have difficulties
in the data separation if there are overlapping regions
and the diffusion coefficients are similar. One solution is
to explicitly force the decay profiles to follow an expo-
nential curve. This is often called hard modelling, since a
parametric model is kept fixed, and only values for the
parameters (in this case diffusion coefficients) are esti-
mated for the data. The combination of hard modelling
steps with soft modelling to improve the performance of
MCR has been reported by many papers. For example,
Bezemer and Rutan [17,18] incorporated MCR (soft
modelling) with non-linear fitting of a kinetic model
(hard modelling) into it. Bijlsma et al. [19] proposed to
combine MCR with Levenberg-Marquardt algorithm
[20] to estimate reaction rate constants from UV-vis
spectroscopic data. The Levenberg—Marquardt algo-
rithm is used in each iteration to update the decay
profiles so as to reduce the ambiguity problem in MCR.
It is shown that the MCR-NLR algorithm with non-
negativity constraints is more robust and flexible than
the classic MCR algorithm to analyse DOSY NMR
data.

2. Theory
2.1. Data preprocessing

The goal of data preprocessing is to remove effects
that will deteriorate the subsequent multivariate analy-
sis. We propose a two-step strategy: first correct for
baseline drifts and secondly remove frequency and phase
shift.

2.1.1. Baseline correction

The baseline correction method applied here was
proposed by Golotvin and Williams [8] and includes two
steps. The first step is to recognise the baseline. This is
done by placing the ith point in the centre of a rectangle
window with a width of N spectral points. For each
window the standard deviation is calculated and the
smallest value is taken as the noise standard deviation
(0noise)- If the difference of the minimal and maximal
values in the ith window is less than the noise standard
deviation multiplied a predefined value n, then the ith
point is considered to be in the baseline as described in
the following equation:

max min

(y - ) < NOnoise- (1)
The parameters, the window width N and the noise
multiplier n, can be chosen to adapt to different data
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sets. The second step is to calculate the smoothed
spectrum by a moving average method. The baseline is
defined by replacing the points in the spectrum found in
Eq. (1) by the value of the smoothed spectrum and
connecting the baseline fragments by straight lines. Fi-
nally, the calculated baseline is subtracted from the
original spectrum. This baseline correction method is
automatic and successfully removes most baseline dis-
tortion in DOSY data.

2.1.2. Phase and frequency shifts correction

As already mentioned, this paper proposes a combi-
nation of FIDDLE (also called reference deconvolution)
[9,10] and a method presented by Witjes et al. [11,12].

The procedures of FIDDLE are performed in the
time domain. The experimental time domain is trans-
ferred to frequency domain by the Fourier transform.
The reference peak is extracted by replacing other peaks
in the spectrum with noise and transformed back to the
time domain by the inverse Fourier transform. An ideal
Lorentzian peak shape of the reference peak is defined
and also transformed to time domain. The corrected
signal is obtained by dividing the original signal in time
domain by the reference time domain signal and then
multiplying the desired estimation of the reference peak.
Finally the corrected NMR spectrum is obtained by a
Fourier transformation of the resulted time domain
signals. This is a classic method for lineshape enhance-
ment of a 1-D NMR spectrum. The drawback of FID-
DLE, especially for the application of the DOSY NMR
data, is that the ideal lineshape of the reference peak
needs to be estimated for every spectrum. It is not
possible to have the same estimate of the reference
peak in every spectrum because the intensities in
different spectra are not the same, i.c., they attenuate
exponentially.

The phase and frequency correction method pro-
posed by Witjes et al. is designed to deal with the
phase and frequency shift problems for a series of
spectra. It is a method based on principal component
analysis (PCA). All instances of a particular peak in
the series of spectra are analysed by PCA to obtain a
PC1 spectrum which can be regarded as the average
spectrum. Each spectrum can be approximately repre-
sented by a linear combination of the real and imagi-
nary values of PCl and one or more of their
derivatives. The information of phase and frequency
shifts is contained in the regression coefficients, which
can be obtained by using classic least squares. Finally
the phase correction is done in the frequency domain
while the frequency shift is corrected in the time do-
main. The whole procedure is repeated until the shifts
reach insignificantly small values. As a result, every
peak is aligned in the same frequency position and
phase value as the PC1 spectrum. This method is
simple and automatic. It does not need the estimation

of lineshape function one by one spectra. The short-
coming is that it can only perform the alignment to a
single peak, one by one. This can give rise to discon-
tinuities on the baseline. Moreover, if it is applied to
multi-peak correction, peak distortion can be caused
(see below).

Considering the Witjes method is able to correct the
peak shifts and phase shifts of single peaks in a series of
spectra, while FIDDLE can correct the peaks of a
spectrum simultaneously, we propose to combine those
two methods to preprocess the original data set. The
basic procedures are based on FIDDLE. The main dif-
ference lies in the step to obtain the desired lineshape.
Instead of estimating it spectrum by spectrum, the de-
sired lineshape of the reference peaks in the spectra can
be obtained by the Witjes method at once. The reference
peaks should have the same peak shape and the same
frequency. The procedures of the combination method
are summarised in Fig. 1.

When this method is used, it is assumed that the peaks
in the same spectrum have almost the same global phase
and frequency shift. This is usually the case in the DOSY
NMR data. The reference peak should be a single peak
and contain signals from the first spectrum to the last
one. The combined method then can correct the global
shifts for the whole data set and therefore decrease the
experimental artefacts significantly without introducing
new artefacts such as discontinuities and new distortion.

2.2. Data analysis by MCR-NLR

2.2.1. Finding the initial guess

Several methods have been proposed to find good
initial guesses for MCR. In [7] IPCA is applied for this
purpose. In this paper, the orthogonal projection ap-
proach (OPA), adapted to the application of DOSY
NMR data, is employed instead because OPA is more
easily implemented and interpreted than IPCA while the
resulted pure variables are nearly the same or even better.
Orthogonal projection approach (OPA) is a stepwise
procedure based on orthogonalisation method [14,15]. It
was initially used to check peak purity in a chromato-
gram. Later OPA was employed to find purest spectra in
HPLC-DAD data and then trigger MCR-ALS to ex-
plore pure components in a mixture [16]. In each step of
OPA, dissimilarities between all spectra and reference
spectrum are calculated and the spectrum that has the
highest dissimilarity is selected as the pure spectrum. The
stepwise procedures continue until the dissimilarity
spectra show random structure. In the case of the DOSY
NMR data, a pure spectrum is only possibly present in
the last few spectra because the intensities of some
components vanish with the increase of the applied
gradient. Therefore, it is logical to search pure variables
on the frequency (chemical shift) dimension, i.e., search
purest decay profiles. Before actually running OPA, the
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Fig. 1. The combination of data enhancement procedures. (a) Baseline correction of the original data set; (b) extract the reference peak by
substituting other peaks with backgrounds noises; (c) using Witjes method to align the reference peaks; (d) inverse Fourier transform (IFT) of the
corresponding spectra into time domain; (e) calculation in time domain to obtain the corrected signal; (f) Fourier transform (FT) into the corrected

spectra (dashed line in zoomed-in image is the original spectrum).

data set needs to be pre-treated by selective normalisa-
tion [14], i.e., variables with mean values greater than a
predefined threshold are normalised to unit length while
other variables remain unchanged. Selectively normal-
ising variables can eliminate the effects of the intensities.
As a result, the amount of dissimilarity only depends on
the angle between an individual vector and reference
vectors. In the experimental data, it is difficult to obtain
random dissimilarity spectrum even with a high number
of pure variables. Hence, it is recommended to search
more pure variables than the real number of components
in a mixture and then plot the pure variables with the
unit length to 1, i.e., normalised pure variables. If some
pure variables show the same decay curves, then it can be
considered that they account for the same component
and hence only one of those pure variables is used to
represent this component in the initial guess matrix.

In some cases there is no pure variable available for
some of or all of the components in the original data set.
Consequently, only using OPA is not able to find all the
pure variables. Windig et al. [21-23] developed a method
combining original with second-derivative data to solve
this problem. Second-derivative data are obtained by
Savitzky—Golay method. The pure variables are then
searched in the conventional data and second-derivative
data sequentially by OPA. The resulted pure variables
are normalised to unit length of 1 and plotted in the same
figure. The number of pure components is determined
visually by the number of the different decay profiles in
this plot.

2.2.2. MCR-ALS combined with non-linear least square
regression

Generally, MCR-ALS with non-negativity constraints
is capable of resolving pure spectra and decay profiles,
provided a good initial guess is present. However, for a
mixture that contains many components and hence may
have many overlapping peaks, there is more ambiguity.
What is more, even small experimental artefacts can also
affect the performance of MCR to such an extent that it is
difficult to obtain unique solutions to the separation of
pure components. Fortunately, MCR is very flexible so
that extra constraints can be applied. Because the signals
of DOSY NMR spectra attenuate exponentially with the
increase of gradient levels, non-linear least square re-
gression on decay profiles for each iteration of ALS can
be used to reduce the rotation ambiguity of MCR. This
can be done by the Levenberg-Marquardt algorithm
with a pre-defined exponential function [19,20].

The attenuation of signal of each component in
DOSY NMR measurement is described by Eq. (2) [24].
In the exponential part of Eq. (2), D(n) is diffusion co-
efficient of the nth component (m?/s). 6 is the duration of
gradient pulses (s) and 4 is the diffusion time (s), both of
which are experiment constants set by the user. K is
multiplication of y, the gyromagnetic ratio of the 'H
nucleus (rad s~! T~!), g, the gradient strength (T), and 4.
Ip(n) is the intensity before gradient strength g is em-
ployed. For a system with N components, the measured
spectra are the sum of the intensities of the components
and it can be expressed by the following equation:
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1(n,g%) = Iy(n) exp[-D(n)(4 — 5/3)K?], (2)
K = ygo,
(&)=Y Ing"). (3)

n=1

According to Egs. (2) and (3), a DOSY NMR data set of
mixture is actually a bilinear data matrix as described in

Eq. (4):
I=C-S", 4)

where C contains N column vectors, every of which
accounts for a pure decay profile of a component, and S
matrix contains the pure spectra, i.e.,

for nth column in C,
C(n) = exp[~D(n)(4 — 5/3)K] (5)

and the nth row in S, S(n) = Iy(n). (6)

Therefore, MCR-ALS can be applied to resolved DOSY
NMR data. Firstly, pure variables are selected by OPA
and placed in matrix C. Then the corresponding spectra
are calculated by least square regression as Eq. (7). A
new set of decay profiles is obtained from the calculated
spectra according to Eq. (8). The non-negativity con-
straints are applied to Egs. (7) and (8). This alternating
procedure proceeds until the residuals reach to a pre-
defined convergence criterion:

s=I1".c-(c"-C)", (7)
C=1-5-(S"-85)". (8)

Before starting a new iteration, Leverberg—Marquardt
algorithm is applied to update the decay profiles C
with an exponential function based on Eq. (5). By a
transformation of natural logarithm, Eq. (5) is actu-
ally a linear regression problem with the increase K2
or g?. Polynomial fitting of the transformed equation
can be used to obtain the initial estimation of pa-
rameters of Leverberg—-Marquardt algorithm. The ad-
vantage of combining hard and soft modelling is that
it can reduce the ambiguities of MCR and hence
make the model more robust. In addition, the non-
negativity constraints are also employed to obtain
chemically and physically meaningful pure spectra and
decay profiles. Finally, the relative root of sum of
squared differences (RRSSQ) is used to assess the
similarity between the reconstructed data and the
original data:

Z (]reconstructed - Ioriginal ) :
Z ([original ) :

%RRSSQ = 100 x \/ 9)

3. Experimental
3.1. Simulated data

One simulated data are constructed to examine the
combination of FIDDLE and the Witjes method. This
data set has been used in [7]. It contains three
components with the diffusion coefficients of 5.0 x 107,
1.0x107%, and 1.0 x 10~7 cm?/s. Thirty-two gradient
levels from 64 x 104-1.9321 x 108 are employed. The
two experimental constants 4 and ¢ are 100 and 5Sms,
respectively. Additionally, in each spectrum of the data
set, the peaks contain a frequency shift of —0.1 to 0.1
data point and a phase shift of —0.5 to 0.5°. This is a
global shift for each spectrum, which means the peaks in
the same spectrum have the same frequency and phase
shifts within the range. To make the data more realistic,
completely random small shifts (1% of the global shift)
are added to the data as well. In addition, the data also
contain normally distributed noise with a standard de-
viation of 0.035% of the highest peak intensity.

A second simulated data set contains four diffusion
components whose diffusion coefficients are 5.0 x 1077,
1.0x 1077, 2.0 x 1077, and 0.8 x 10~7. It has the same
gradients levels and experimental parameters as the one
described above and also contains noise with a standard
deviation of 0.035% of the highest peak intensity. It is
supposed that this data set has been preprocessed by the
methods mentioned above. Thus, there is only a small
amount of frequency and phase shift, i.e., 0.02 data
point and +0.01°, respectively. This is a more complex
data set in which there are more overlapping peaks and
the diffusion coefficients of the components are closer to
each other. It is used to examine the difference between
the classic MCR and MCR-NLR.

3.2. Experimental data

The mixture is made by Océ-Technologies BV, Venlo.
It contains Tinuvin 328 (0.5323g), MM, (0.3279 g),
ethylene glycol (0.1356 g), pyrazine (0.1370 g) dissolved
in water, and CDCl;. Two data sets of this mixture are
recorded by Organon and Philips, respectively. The
same sample measured at two different locations with
different conditions leads to slightly different results.

The first data set, named EXP1, measured by N.V.
Organon, Oss, contains small peak and phase shifts,
as well as baseline distortion and baseline drifts.
Therefore, EXP1 can be used to examine the prepro-
cessing method. The data were measured by a Bruker
400 Hz NMR spectrometer. A bipolar gradient simu-
lated echo pulse sequence was used. The applied
diffusion time (4) is 100ms and the duration of gra-
dient pulses (0) is 1.2ms. The maximum gradient is
53.5Gauss/cm and it varies with 32 levels. Therefore,
the data contain 32 spectra and in each spectrum
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there are 8192 points on the chemical shift dimension
(size: 32 x 8192).

The second experimental data set (EXP2), measured
by Philips CFT, Eindhoven, almost has no shift problem
but only a small baseline drifts are present. These data
are also recorded by a Bruker 400 Hz NMR instrument
with the use of a bipolar gradient simulated echo pulse
sequence. The maximum gradient applied is 54.4 Gauss/
cm and there are 32 gradient levels used in the DOSY
experiment. The size of the data EXP2 is also 32 x 8192.
The applied diffusion time (4) is the same as those of
data EXP1 but the duration of gradient pulses (J) is
smaller (0.6ms), so the intensities decay slowly and
hence the regression coefficients of the exponential
curves (relative diffusion coefficients) are closer to each

other. This may cause difficulties to resolve the data if
only applying classic MCR. Therefore, data EXP2 are
employed to evaluate the performance of classic MCR
and MCR-NLR.

A DOSY spectrum of this mixture, calculated using
the commercial XWINNMR Software (Bruker, Ger-
many) [25], is shown in Fig. 2A, where the components
and their molecular weights are also displayed. This
DOSY spectrum is obtained based on the algorithm of a
single channel method, i.e., mono-exponential fitting. It
reveals the components in the mixture reasonably and
can be used as a reference of the resolved spectra resulted
from the multivariate methods. The single channel
method is able to gain good separation in this case be-
cause there is almost no overlapping peak contained in
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Fig. 2. Components of the chemical mixture. (A) The DOSY spectrum of experimental data and (B) the corresponding pure spectra.
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the mixture spectrum. However, one can see that the
calculated diffusion coefficient of each peak varies in a
considerable range even there is only one component
contributing to one peak. This is also the main disad-
vantage of all the single channel methods [7]. If there are
more overlapping peaks in a sample, it may be difficult to
use the single channel methods and therefore applying
multivariate methods is necessary. This is also the pur-
pose of this paper to explore a more general algorithm
with the multivariate methods. The experimental data
sets used for the evaluation of MCR and MCR-NLR
contain six components. However, there are only four
components that can be resolved because the diffusion
coeflicients of ethylene glycol and pyrazine are very close
to each other. Besides, the signal produced by the OH
group of water at 1.8 ppm in chloroform and the OH
group of ethylene glycol at 2.45 ppm are very dependent
on the condition of the total solution. Because of the
exchangeable nature of these protons, the signals can
change in position in time. This can also be another
reason why the two experimental data sets result in dif-
ferent pure spectra for the last two components (see be-
low). The peak near 2.4 ppm is a combination of those
two OH groups. Hence, it appears to interfere on the

diffusion coefficient axis with chloroform in Fig. 2A.
Fig. 2B gives the NMR pure spectra of the chemical
compounds measured in the solvent of chloroform.

3.3. Software

The data analysis is accomplished using MAT-
LAB_6.0 from Math works [26]. The MCR algorithm
used in this paper is modified based on the MCR
function in PLS_Toolbox 2.2. All calculations are done
on a Sun UNIX workstation. The software package
used for the calculation in this paper will soon become
available on our website: http://www.cac.sci.kun.nl/.

4. Results and discussions
4.1. Assessment of preprocessing method

4.1.1. Simulated datal

The first simulated data set and the ‘“‘true” pure
spectra are plotted in Fig. 3. There are two separated
peaks and three peaks partially overlapping with one
another. The problem of the Witjes method lies in the

-
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Fig. 4. Problem of the PCA-based correction for frequency and phase shifts. (A) The zoomed-in image of the partially overlapping region in the
original data; (B) data correction peak by peak; and (C) data correction with the three peaks together.


http://www.cac.sci.kun.nl/

264 R. Huo et al. | Journal of Magnetic Resonance 169 (2004) 257-269

overlapping region. The zoomed-in image of the
overlapping region is given by Fig. 4A. If the fre-
quency and phase correction are done peak-by-peak
separately, then discontinuities will appear on the
baseline, as indicated by arrows in Fig. 4B. If the
three peaks are corrected altogether, the peak shape
can be distorted (see Fig. 4C). On the other hand,
when the data are corrected by the combination of
FIDDLE and Witjes method, the phase and peak
shifts are corrected and no new artefacts are intro-
duced (see Fig. 5). To examine how the combined
preprocessing method improves a DOSY NMR data,
MCR is applied to the simulated datal before and
after correction. The resolved pure spectra and the
corresponding decay profiles are shown in Fig. 6. In
Fig. 6A, one can see that the pure spectra of the first
and second component are not resolved correctly.
There are some peaks that are contributions from
other components. This is because the position and
the phase of the corresponding peak in different
spectra are not consistent. Also, the corresponding

A
60

40+

20

decay profiles are not smooth. On the other hand, the
pure spectra and the pure decay profiles are better
resolved after data correction, as indicated in Fig. 6B.

4.1.2. EXPI

The data EXP1 are analysed by OPA and classic
MCR. The pure spectra and decay profiles of the data
set before and after correction resolved by MCR are
plotted in Figs. 7 and 8, respectively. In Fig. 7A, one
can see that the peaks around 6 ppm from the second
component are also present in other pure spectra,
whereas these errors are reduced in the corrected
spectra, as can be seen in Fig. 7B. This is also the case
for the peak around Oppm and around 1 ppm. More-
over, the last spectrum in Fig. 7B contains lower in-
tensities of the peaks from other components. The
decay profiles from the data with correction are also
smoother (see Fig. 8). By comparing the DOSY spec-
trum in Fig. 2A and the pure spectra in Fig. 2B, the
peak around 3.5ppm in the last spectrum in Fig. 7B
dose not belong to any of the components in the

Fig. 5. Illustration of the data correction by combining FIDDLE and the Witjes method. (A) The partially overlapping region in the original data;
(B) the partially overlapping region after correction; and (C) zoomed-in image after correction.
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Fig. 6. The resolved pure spectra and pure decay profiles by MCR for simulated datal. (A) Obtained by the data before correction and (B) obtained

by the data after correction.

mixture because it has a much slower decay behaviour
(see Fig. 8). This could be caused by the formation of
an unknown impurity, which may lead to the mixed
peak of water and ethylene glycol that is too small to
be separated. Moreover, the intensities of the peak near
7.25ppm accounting for the chloroform are very low
because of evaporation.

4.2. Comparison of MCR vs MCR-NLR

4.2.1. Simulated data2

The second simulated data set contains more over-
lapping region and four components (see Fig. 9). This
more complex data set is used here to examine the
performance of classic MCR and the combination of
soft and hard modelling method, i.e., MCR-NLR. The
pure variables are found by OPA and second-derivative
method, as described already in Section 2. The resolved
pure spectra obtained from the two methods are given
by Fig. 10. It shows that the combination method
MCR-NLR can gain much better resolution of the
pure spectra than the classic MCR in which only non-
negativity constraint is applied. The calculated diffu-
sion coefficients (D) and the RRSSQ values are shown

by Table 1. The D values acquired by both methods
are very similar, although those values from MCR-
NLR are a little closer to the corresponding reference
values. Also, the RRSSQ is a little bit better with
MCR-NLR. From the results above, it can be seen
that the classic MCR has difficulties in dealing with
data that contain overlapping peaks in the presence of
even a small amount of artefacts. Also, the similarity
of the diffusion coefficients is another reason why the
classic MCR is not able to resolve the pure compo-
nents properly. The disadvantage of most curve reso-
lution method is that the solutions are not unique; i.e.,
there are infinite pure spectra and the decay profiles
that can fulfil Eq. (4) with the same residuals between
the constructed data and the original data [27]. This
disadvantage can be overcome by applying non-nega-
tivity constraints to the solutions, which is described
as the classic MCR in this paper. However, as there are
more overlapping peaks in the data, non-negativity
constraints can only remove part of the non-uniqueness
problem. By applying NLR in each iteration of the
classic MCR, the pure decay profiles are forced to
follow exponential decay more strictly and hence
results in unique solutions.
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Fig. 7. Pure spectra of data EXP1: (A) before correction and (B) after correction.

4.2.2. Exp2

Following the same procedures as described before,
i.e., after the data correction, first using OPA to find the
pure variables, and then running the multivariate
methods, four pure spectra and decay profiles are
found. Since the data Exp2 do not contain distinct peak
and phase shifts, the preprocessing procedure mainly
correct the baseline shift problem and the peak and
phase position remain more or less the same after cor-
rection. The resolved pure spectra are displayed in
Fig. 11. Compared to the DOSY spectrum in Fig. 2A
and the pure spectra in Fig. 2B, one can see that the
pure spectra from MCR-NLR are better resolved than
those obtained from the classic MCR. The classic MCR

can only reasonably resolve the first component, Tinu-
vin 328, but fails to separate the others. Table 2 presents
the relative diffusion coefficients of the components
calculated by the two methods and the RRSSQ values.
Again, one can see that there is only a tiny change in
diffusion coefficients, which indicates that the diffusion
coefficients are relatively more stable than the pure
spectra. An interesting thing is that the RRSSQ value
from MCR-NLR are higher than that from the classic
MCR. This is because the classic MCR minimise the
residuals as much as possible while imposing a kinetic
model on the data is trying to correct an imperfect ex-
ponential decay profile. As a result, more residuals can
be introduced.
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intensity

Fig. 9. The more complex simulated data2. (A) The raw data and (B)
the reference pure spectra.

5. Conclusion

The quality of DOSY NMR data can be improved by
a set of carefully selected preprocessing methods. Base-
line distortion and baseline drift can be eliminated by
the automatic baseline correction method. The fre-
quency and phase shift problem can be reduced by the
combination of FIDDLE and the Witjes method. When
using this combined method, it is assumed that the data
have the same global shift of the peaks in the same

ppm

A
0 ! i i ; .

10 9 8 7 6 5 4 3 2 1 0
ppm

Fig. 10. Resolved pure spectra of the simulated data2 by: (A) MCR
and (B) MCR-NLR.

spectrum and the small random variation can be ig-
nored. For the data that have large dynamic shift in the
whole spectrum, the data can be divided with two or
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Table 1 Table 2
Diffusion coefficients (x 10~7) of the simulated data obtained from Relative diffusion coefficients of the experimental data obtained from
MCR and MCR-NLR MCR and MCR-NLR
Reference value MCR MCR-NLR MCR MCR-NLR
Comp.1 5.000 5.040 5.021 Tinuvin 0.0173 0.0174
Comp.2 1.000 1.006 0.994 M, My 0.0230 0.0228
Comp.3 2.000 1.984 1.986 EG and pyrazine 0.0274 0.0274
Comp.4 0.800 0.769 0.778 Water and CHCls 0.0454 0.0481
RRSSQ 0 1.03% 0.88% RRSSQ 0.31% 0.94%
several parts on the chemical shift dimension and the data quality and hence help to identify pure components
combined method is applied to part of the data each more easily from MCR. As the data set is getting
time. Preprocessing of the original data can improve the complex, i.e., many overlapping peaks, similar diffusion
A
0.4
02+
0 | : AL . : : j‘
12 10 8 6 4 2 0
0.6
0.4 ‘
02+
0 : : - : 1l ‘
12 10 8 6 4 2 0
0.6
0.4
02
0L : : s ALl : JL A J‘L
12 10 8 6 4 2 0
0.6
04 J
02
0 1 ‘ JL . il ‘ : J L_ I\A “ h ‘
12 10 8 6 4 2 0
ppm
B
0.4
02 J
0 ) . JU .V ' . A J‘t J‘
12 10 8 6 4 2 0
0.6
0.4
02
0 ; ; AL A ; ; 1l )
12 10 8 6 4 2 0
0.6
0.4
0.2 “
0 : — : : A ,
12 10 8 6 4 2 0
0.6
0.4
02
0 : : : : L :
12 10 8 6 4 2 0
ppm

Fig. 11. Resolved pure spectra of the data EXP2 by: (A) MCR and (B) MCR-NLR.
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coefficients, and so on, the solution of MCR is not
unique any more. In this difficult situation, MCR-NLR,
the combination of soft and hard modelling method, can
be applied to eliminate the ambiguities and result in
more reasonable resolution.
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